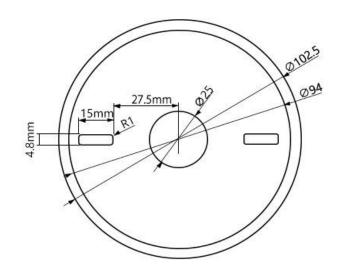
吸顶式烟雾(温湿度)变送器 规格书(V1.2.1)


采用工业通用标准 RS485 总线 MODBUS-RTU 协议接口,方便接入 PLC,DCS 等各种 仪表或系统,用于监测烟雾状态量。内部使用了较高精度的传感内核及 相关器件,确保产品 具有较高的可靠性与卓越的长期稳定性。

产品优势特点

- 1、传感器供电增加防反接保护,工业现场防浪涌保护。
- 2、产品带有大分贝蜂鸣器报警和 LED 发光二极管灯提示
- 3、RS485 通讯接口,异步半双工模式,支持二次开发。
- 4、通讯波特率 2400、4800、9600、19200、38400、115200bp s 可设置,出厂默认值为 9600 bp s。
 - 5、 具有测量范围宽、精度高、线性度好、通用性好。
 - 6、RS485(MODBUT-RTU协议)多传感器组网通讯,1200米远距传输。
 - 7、吸顶式圆形外壳使用方便、便于安装。
 - 8、外壳采用 ABS 阻燃材质, 耐高温, 不易被腐蚀, 不易变形。

产品尺寸图

※手工测量,请以实物为准

技参术数

上海雨佃量
Y7501B(RS485)/Y7501S(RS485+开关量)
0~5000PPM
$\pm 7\%$
±5%
热响应式半导体
RS485 (MODBUT-RTU)/RS485+开关量
-30~80℃
±0.5°C (@25°C)
0~100RH%
±3RH% (@25°C)
9600(默认)8, n, 1
DC12~24V
烟雾: 1PPM; 温度: 0.01℃; 湿度: 0.01%RH
≤0.5W
30V1A
-30~70℃,0~100RH%(无防凝露)

产品接线/接口

传感器引线颜色	定义	备注
红色线	电源正极 DC12~24V	直流供电
绿色线	电源负极	
黄色线	RS485 A+	
蓝色线	RS485 B-	
COM	开关量公共端	(物理开关量款独有)
KNC	开关量常闭端	(物理开关量款独有)
KNO	开关量常开端	(物理开关量款独有)

RS485型: 通讯协议

产品使用 RS485 MODBUS-RTU 标准协议格式,所有操作或回复命令都为 16 进制数据。设备出厂时默认设备地址为 1, 默认波特率为 9600,8,n,1。

1. 读取数据 (功能码 0x03)

问询帧(十六进制),发送举例:查询 1#设备 1 个数据,上位机发送命令: 01 03 00 00 00 03 05 CB。

地址	功能码	起始地址	数据长度	校验码
01	03	00 00	00 03	05 CB

对于正确的问询帧,设备会响应数据: 01 03 06 01 F4 00 79 00 7A C1 4B,响应格式:

设备地址	功能码	数据长度	数据1(烟雾)	数据 2 (温度)	数据 3 (湿度)	校验码
01	03	06	01 F4	00 79	00 7A	C1 4B

数据说明:命令中数据为十六进制,

数据 1 烟雾,01 F4 转为十进制数 值为 500,数据倍率为 1,则真实值为 500/1=500,烟雾浓度值为 500PPM。

数据 2 温度, 0A E1 转为十进制数值为 2785,数据倍率为 100,则真实值 为 2785/100=27.85,温度度值为 27.85℃。

数据 3 温度, 14 28 转为十进制数值为 5160,数据倍率为 100,则真实值 为 5160/100=51.60,温度度值为 51.60%RH。

当值为负数时,数据是以补码的形式上传的。通常通过判断值是否大于 32768 的方法来 判断正负。当接收到的值大于 32768 时即为负值,前值减去 65535 除以 100 即为真实值。比 如接收到的温度数据为 62999(十六进制

F617),则真实值=(62999-65535)/100=-25.36。

问询帧(十六进制),发送举例:查询 1#设备报警状态,上位机发送命令: 01 03 00 00 00 02 C4 0B。

地址	功能码	起始地址	数据长度	校验码
01	03	00 03	00 01	74 OA

对于正确的问询帧,设备会响应数据: 01 03 02 00 00 B8 44 或者 01 03 02 00 01 79 84, 其中数据位的 0 代表未报警状态,1 代表报警状态。

响应格式:

地址	功能码	数据长度	报警状态	校验码
01	03	02	00 00 (未报警)	B8 44
01	03	02	00 01 (报警)	79 84

2. 数据地址表

组态地址	寄存器地址	寄存器说明	数据类型	值范围
40001	00 00	烟雾寄存器	只读	0~65535
40002	00 01	温度寄存器	只读	0~65535
40003	00 02	湿度寄存器	只读	0~65535
40004	00 03	烟雾报警状态	只读	0~1
40101	00 64	型号编码	读/写	0~65535
40102	00 65	测点总数	读/写	1~20
40103	00 66	设备地址	读/写	1~249
40104	00 67	波特率	读/写	1~6
40105	00 68	通讯模式	读/写	1~4
40106	00 69	协议类型	读/写	1~10
40107	00 6A	上传时间设置	读/写	1~3600
40108	00 6B	烟雾校正值	读/写	-1000~1000
40109	00 6C	温度校正值	读/写	-1000~1000
40110	00 6D	湿度校正值	读/写	-1000~1000
40112	00 6F	烟雾报警值上限设置	读/写	0~5000

3 读取与修改设备地址

(1) 读取或查询设备地址

若不知道当前设备地址、且总线上只有一个设备时,可以通过命令 FA 03 00 64 00 02 90 5F 查询设备地址。

设备地址	功能码	起始地址	数据长度	校验码
FA	03	00 64	00 02	90 5F

FA 即 250 为通用地址, 当不知道地址时可以用 250 这个地址来取得真实 设备地址,00 64 为设备型号的寄存器。

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 04 1E 8C 00

02 BC 31, 其格式解析如下表所示:

设备地址	功能码	数据长度	型号编码	校验码
01	03	04	00 01 00 01	BC 31

响应应数据中,第一个字节 01 表示当前设备的真实地址为,55 3C 转换 为 10 进制为 1 即表示当前设备主型号为 1

(2) 更改设备地址

比如当前设备地址为 1, 我们希望更改为 02, 则命令为: 01 06 00 66 00 02 E8 14。

设备地址	功能码	寄存器地址	目标地址	校验码
01	06	00 66	00 02	E8 14

更改成功后,设备会返回信息: 02 06 00 66 00 02 E8 27, 其格式解析如下表 所示:

设备地址	功能码	寄存器地址	目标地址	校验码
02	06	00 66	00 02	E8 27

响应数据中,修改成功后,第1个字节为新的设备地址,一般设备地址更改后,立即生效,此时用户需要同时将自己软件的查询命令做相应更改。

4 读取与修改波特率

(1) 读取波特率

设备默认出厂波特率为9600,若需要更改,可根据下表及相应通讯协议进行更改操作。比如读取当前设备的波特率 ID,命令为:01030067000135D5,其格式解析如下。

设备地址	功能码	起始地址	数据长度	校验码
01	03	00 67	00 01	35 D5

读取当前设备的波特率编码。波特率编码: 1 为 2400; 2 为 4800; 3 为 9600; 4 为 19200; 5 为 38400; 6 为 115200。

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 02 00 03 F8 45,其格式解析如下表所示:

设备地址	功能码	数据长度	波特率编码	校验码
01	03	02	00 03	F8 45

根据波特率编码,03为9600,即当前设备的波特率为9600。

(2) 更改波特率

比如将波特率从 9600 更改为 2400, 即将代码从 3 更改为 1, 则命令为: 01 03 00 67 00 01 35 D5。

设备地址	功能码	寄存器地址	目标波特率	校验码
01	06	00 67	00 01	F9 D5

将波特率从 9600 更改为 2400,即将代码从 3 更改为 1。新的波特率会即时生效,此时设备会失去响应,查询设备的波特率需做相应修改。

4读取校正值

(1) 读取校正值

当数据与参照标准有误差时,我们可以通过调整"校正值"来减小显示误差。 校正差值可修改范围为正负 1000,即值范围为 0-1000 或 64535-65535。 比 如当显示值偏小 100 时,我们通过增加 100 来校正,命令为: 01 03 00 6B 00 01

F5 D6。在命令中 100 即十六进制 0x64;如果需要减小,则可以设置负值,比 如-100,对应十六制制值为 FF 9C,其计算方式为 100-65535=65435, 再转为 十六进制则为 0x FF 9C。设备校正值是从 00 6B 开始,我们以第 1 个参数为 例进行说明,多个参数时校正值读取与修改方法相同。

设备地址	功能码	起始地址	数据长度	校验码
01	03	00 6B	00 01	F5 D6

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 02 00 00 B8

44, 其格式解析如下表所示:

设备地址	功能码	数据长度	校正值	校验码
01	03	02	00 00	B8 44

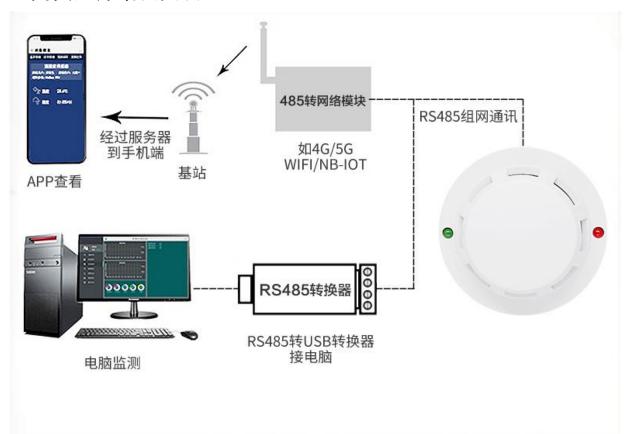
响应数据中,第一个字节 01 表示当前设备的真实地址,00 6B 为第一个 状态量校正值 寄存器。若设备有多个参数,其它参数操作方式与此相同,一般 温度、湿度有此参数。

(2) 更改校正值

比如当前状态量偏小,我们希望将其真实值加 100,当前值加 100 校正操 作命令为: 01 06 00 6B 00 64 F9 FD。

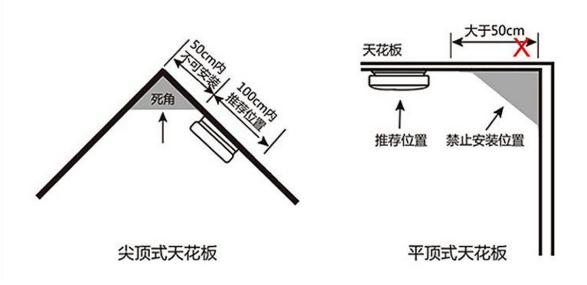
设备地址	功能码	寄存器地址	目标地址	校验码
01	06	00 6B	00 64	F9 FD

比如当前状态量偏大,我们希望将其真实值减 100,当前值减 100 校正操 作命令为: 01 06 00 6B FF 9C B9 8F。


设备地址	功能码	寄存器地址	目标地址	校验码
01	06	00 6B	FF 9C	F9 FD

应用方案

*产品配套相关调试软件,有需要请联系我司


组网实用介绍及安装

安装方法

传感器安装请与灯具或装饰物保持到少30厘米的距离,同时远离墙壁和角落保持至少50厘米

■ 安装位置说明

免责声明

本文档提供有关产品的所有信息,未授予任何知识产权的许可,未明示或 暗示,以及禁止发言等其它方式授予任何知识产权的许可?除本产品的销售条 款和条件声明的责任,其他问题公司概不承担责任。并且,我公司对本产品的销售和使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适 销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保,本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

上海雨佃量

陆园园-销售经理-

上海雨佃量物联科技有限公司 上海雨佃量科技有限公司

18512139808

kellysky@uyunnet.com

♥上海市宝山区潘径路2666号3、4幢